S.No. 8046 24DPMA01

(For the candidates admitted from 2024-2025 onwards)

M.Sc. DEGREE EXAMINATION, AUGUST 2025

First Semester

Maths

ALGEBRAIC STRUCTURE

Time: Three hours

Maximum: 75 marks

PART A — $(10 \times 2 = 20 \text{ marks})$

Answer ALL questions

- 1. Define normalizer.
- 2. Define P-Sylow subgroup of G.
- 3. Define the internal direct product of G.
- 4. Define the R-Module.
- 5. Define similar transformation.
- 6. Determine the index of nil—potent of *T*.
- 7. Write down the Jordan Canonical form.
- 8. Describe the companion matrix of f(x).
- 9. Define trace of 'A'.
- 10. Define unitary transformation.

PART B —
$$(3 \times 5 = 15 \text{ marks})$$

Answer any THREE questions out of Five questions

- 11. Prove that N(a) is a subgroup of G.
- 12. Suppose that G is the internal direct product of $N_l,...,N_k$ For $i \neq j, N_i \cap N_j = (e)$, and if $a \in N_i, b \in N_j$, then prove that ab = ba.
- 13. Show that if two nilpotent linear transformations are similar if and only if they have the same invariants.

- 14. If two matrices A, B in F_n are similar in K_n where K is an extension of F. Then prove that A and B are already similar in F_n .
- 15. If F is of characteristic 0 and if S and T, in $A_F(v)$, are such that ST-TS commutes with S, then prove that ST-TS is nilpolent.

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions.

16. (a) If $O(G) = p^n$ where p is a prime number, then prove that $Z(G) \neq (e)$.

Or

- (b) State and prove first part of Sylow's theorem.
- 17. (a) Let R be a Euclidean ring, then prove that any finitely generated R-module M, is the direct sum of a finite number of cyclic sub modules.

Or

- (b) Let $G=S_n$, where $n\geq 5$; then $G^{(K)}$ for K=1,2,... contains every 3 -cycle of S_n .
- 18. (a) If $T \in A(V)$ has all its characteristics roots in F, then there is a basis of V in which the matrix of T is triangular.

Or

- (b) Prove that there exists a subspace W of V, invariant under T, such that $V=V_1\oplus W$, where V_1 is a subspace of V.
- 19. (a) For each $i=1,2,...k,\ V_i\neq (0)$ and $V=V_1\oplus V_2\oplus ...\oplus V_K$. Prove that the minimal polynomial of T_i , is $q_i(x)^{li}$.

Or

- (b) Let V and W be two vector space over F and suppose that i is a vector space isomorphism of V onto W. Suppose that $S \in A_F(V)$ and $T \in A_F(W)$ are such that for any $v \in V$, $(vS) \psi = (v \psi)T$. Then prove that S and T have the same elementary divisors.
- 20. (a) Prove that for all $A, B \in F_n$
 - (i) (A')' = A
 - (ii) (A+B)' = A' + B'
 - (iii) (AB)' B'A'

Or

(b) If $T \in A(V)$ is such that (vT, v) = 0 for all $v \in V$, then prove that T = 0.